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Robust Adaptive Control:

Stability and Asymptotic Performance
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Absract The robust pameter estimation sabproblem involves reduction of
parameter unctrAinty htough the use of meatrements obtained on-line.

Systems containing both compact real parametric uncertainty and The novelty of the estimation problem as we have posed it. is that the
frequency-weighted bounded operator uncertainty ae addressed. It is measurements and physical process am not corrupted by exogenous sto-
shown that any parameter adaptive control system is robustly stable pro- chastic noise, but rather by the presence of nonparametric dynamic uncer-
vided only that: (I) the unknown parameters lie in a known compact con- ainty within the system. Others have addressed this issue with tie-
vex set, (2) the control design rule is lipschimzian, (3) the conuol design domain characterizations of uncertainty (which do not match the traditional
rule would produce a robust controller if given perfect parameter informa- robust-control characterizaions). or by mapping the frequency-doman
tion. and (4) a specified robust parameter estimation algorithm is applied in uncertainty bound to a (generally) conservative pouerwise-in-ame signal
lieu of perfect parameter information. It is also shown that the asymptotic bound. In contrast, our approach is based on a relative deadzone technique
robust performance level may be made arbitrarily close to that of the non- using a nonconservative perturbation signal energy (L2) bound (which is
adaptive design which would result from perfect parameter information. described in various levels of detail in [8, [11] and (121). This bound is

arguably the most natural and tightest bound for our problem formulation
L Introduction since the H- operator norm corresponds directly with the induced-L 2 gain

Most adaptive control theory begins with a plant description contain- of the operator. Loosely speaking, our parameter adjustment mechanism
ing uncertain real parameters. However, it is generally recognized that a provides nonincreasing parameter errors, with strictly decreasing parameter
specific paramemc plant description will never exactly describe a physical errors whenever the parameter error is distinguishable from zero based on
system's response. regardless of the choice of the parameters. As a conse- available measurements.
quence, the issue of nonparametric dynamical uncertainty in addition to The remaining task is the integration of the control and estimation
parametric uncerainy has received a great deal of attention from the adap- techniques, and analysis of the overall system. In this paper, we state a
ive control comm":niry. A number of robust adaptive contol results have new stability result: the combination of perfect parameter information
already been obtained (e.g., [131, (15], [14], [4]. [6]). The community is robust stability and the use of the robust parameter esimanton process
currently seeking to expand the definition of robustness and the collection together imply bounded-L2-input - bounded-L 2-output stability. The BIBO
of design techniques. property is also obtained with a slightly modified L 2 norm which incor-

This paper focuses on a notion of robustness which is common in porates exponential de-weighting of older information.
robust (nonadaptive) control theory and practice. Specifically, we address The underlying stability concept is simple: if the system behaves as if
stability and performance in the presence of two types of uncertainty: the parameter error is zero. then the perfect-information robustness analysis
paramemc uncertainty characterized by an a priori known convex member- guarantees that the system is behaving in a stable fashion; if the system
ship set, and non;aL"amet'ic uncertainty as characterized by an a priori behaves as if the parameter error is nonzero, then the robust esnmation
known frequency domain magnitude bound. Frequency weighted uncer- process reduces the euclidean norm of the parameter error vector (which
tainty bounds have been used to characterize modeling errors since at least cannot go on forever since the norm is bounded below by zero). A formal
the appearance of [2], and remain popular in sensitivity and robustness version of this argument is given in this paper.
analyses (e.g.. [191, [31, [201, (211, [171). We adopt the not-uncommon Robust performance results are given as well. Robust performance is
approach of absorbing the weighting function describing the frequency often chrcerized in terms of the worst-cae norm of a chosen output sig-
domain magnitude bound into the representation of the known portion of nal. given an assumed norm on the input ipals, where the worst-case is
the plant. The residual normalized uncertainty is characterized by the tae with respect to dynamic uncertainty. In this paper, it is shown that
operator norm induced by taking L2 or fading-memory L2 norms on the
input and output of the uncertain operator. Since the H- norm of an LI the asymptotic ierfobu arme of tha overall sdapme system is no worse than
(linear time-invariant) transfer function is its induced L2 norm, the uncer- te gumie i rons peRemrkable of the same tem given pefecttainry set we tra covers the weighted ball-in-H" with the same weighting parmeter informaton. Remarkably, the patramenic uncertainty does not
functyon, degrade the asymptotic system performance guarantees. Unfor unately, thefuncth a r ei transment performance is not quantified, and can be arbitrarily poor.Then re thrthe mes to our work: perfect paratier iformation

tuned-system robustness, robust parameter estimation, and the interplay of IL Preliminaries
these in the overall system. Of course, the ultimate requirement is that the
overall system satisfy robust performance objectives. A reasonable pr- e- A. Nottion
quisite is the solution of the subproblem of robust control given perfect Consder a function x : --o e . Define the orm
parameter informaion and the subproblem of robust paramet emaaon C

(ven no control obctives. d
In earlier work we provided the solution to them ibhproblems. lit Il f(

robust control subproblem involves analysis of a set of (plant, controller)
paits, where the set is indexed by the value of the plant puimtete vector, where the superscript a is omitted when o 0, and the subscript t is omit-
and the paved convoller is detamined through the on-line design rule. In ted when t - -. When lix 110J exists for all finite t. x is said to be in
(7]land I10 the robust coatrol subproblem is defined in dmil. and a model L2*-. When Ilx 1IaJ is uniformly bounded over all I > 0. x is said to be
reference example is analyzed through the ue of smn singular value in L2-. When a a 0. we omit it from the superscript. and use the more
dmory. Other approebes to analyzing systems with both paameric common notion x a or xa L2.
degrees of freedom and foupwara]. ic hould d-operasor u a For a vector o, let 101 denote the euclidean norm.

give in (1) (5] an 118). l ilIllliml



Let H- denotc the space of transfer functions T (s) which are analytic Vectors Op and 0c ae. respectively. the unknown plant parameter
and bounded in the open nght half plane. Let SO be the shift operator vector and the adjustable conuoler parameter vector.
defined by Laser, # will be called the regression vector. i, 0t) will denote the

ST(s) = T(s-'o). (2) estimate of 8 p at time t. and Op (t) will denote the error Op - ep ut).
Let S0 H" be the space of tansfer functions T(s) such that SIT e H-. In We treat only the case in which the controUer's parametic sucture is
this context, C will be referred to as a "fading memory time constant." fixed, and only certain parameter values may vary. These con-oller

For T(s)e H-. we define ItT IIH. to be the usual H- norm (see [20]). parameters are defined by a design rule which maps plant parameter values
Recall that IIT IIH is the operator norm induced by the choice of the to controller parameter values, that is,
L 2[0.-) norm on the input and output signals of T. We will use lIT 11,2 ec() = fc(0p( ). (5)
to denote the induced-L 2 norm on T when T is not LTI (Linear Tme- We will assume only thatf, is lipschian on the orbir (l) : t 2 0).
Invariant). Similarly. II. II ' will denote the induced-L 2-o norm. Likewise,
define the shifted H" norm We assume the prior knowledge

iiTi I. ST 11H.. (3) eeop (6)
where e, is an arin'ar.y compact convex set-

Table I summarizes the norm notation used in this paper. Note that

Signal norms take the form *l. a I II ", while operanor norms take This prior knowledge may come from an understanding of the physi-
the form "lI.llmn. cal meaning of the parameters. In this case, it may be useful to thnk of

the physical parameters as having a unique correct value. However, the

Table I system performance depends only upon the system input-output response,
Norm Notation Summary and, from this input-output perspective, ther does not necessarily exist a

-1 Euclidean Norm unique choice for the "correct" plant pa'amete vector.

1.1 signal norm(eA basic principle of mathematical modeling is that no model can be
anorm (eluation ()) venfied through empirical observation; models may only be invalidated11.110 signal norm withi = t Thus it is reasonable to define the set of "corremc plant parameters

I-1I signal norm with t = - and a = 0 (denoted e;) for a particular fixed plant input-output mapping P as
1.- h, shifted H- norm (equation (3)) 1 := [6 : the collection of all responses yp = Pup

I. li.usual H" norm
1.10, L-a -induced operator norm does not conuadict Op = 0), (7)

11- , 2 L2-induced operator norm where "all reponses" means all those generated by all up. These an
correct parameters in the sense that they produce a mathematical model

Miscellaneous. For a vector V. "D(V)" denotes a diagonal matrx which cannot be invalidated by any experiment.
whose row i column i element equals the i'h element of the vector V. Of course, in testing for a contradicnon of 8p = e in the above
Superscript T denotes transposition. Throughout the paper. a is a parcu- definition, one must evaluate Op in the context of the math model in which
lr fixed and known nonnegative number. it is embedded. Specifically, for our plant representation, any choice of 8p

B. System Assumrions in Op is "correct" if there exists a A Satisfying (4) such that Figure I pro-
e sduces the actual plant's input-output response for all possible inputs."The system is assumed to take the form of Figure 1. In the figure. uhu hsppr h yble ~rsnsayeeeto

up, yp, and r denote, respectvely, the actuated plant input, measured plant Throughout this paper, the symbol Op represents any element of
output, and exogenous command input. The signal d, is a fictitious input and not some particular unique physical parameter value. Furthermore, no
which will be added laser to account for the effect of nonzero initial condi- expression depends upon the particular choice of Op within @;.
tions. Note the distinction between Op and @;. The set Ep represents the

prior knowledge of set of possible plant parameters; its significance is that
ddyV it limits the set in which we need search for ep. The set e; is the plant-

specific (hence unknown) set of values of Op which may be regarded as
correct for the particular plans.

Remark: the system of Figure I represents a broad class of both
direct adaptive conuol systems (as shown in [9] and [10]), and indirect

+Padaptive conu-ol systems (as shown in I1]).
Re .- &. The feedback representation of embedded uncertainties is

based o,. 'nt "- 16. As is now common with such representations, any
frequency- - ent weighting function on the uncetainry A is absorbed
into the symti, G.

YP C. Inita Condon Assu,,pnons

K r Assume, for the moment. that d, of Figure I is zero, hut that G and
r A may have nonzero initial conditions. In this section, we show that an

equivalent system is produced by including a noneo d. and assumiung that
the initial conditions of G and A am wzo. Moreover, li II(', as a func-
doo of time, has a known exponentally decaying bound.

The system will be equivalent in the sense that Figure 1 will continue
to describe the input output response of the system, without modifcation of
the assumptions regarding the sets in which A and Op lie, and without
altering the value of G. The time histories of up and yp are precisely the

The transfer matrix G is the known portion of the plant 'Me trn r same, although the definitions of the internal signals , v, d, d, and g arema1x K is the fixed porton of the controller. Both G and K are prom modified to reflect the fact that the transient effects ae algebraically re-
and LTI. and GcS.'H-. The submamtx G31 , which maps the input l to
the output y, is in SH .  located in the equatons.

The symbol A(s) is As arbitary (unknown) transfer function which, 1. ltnir Condition of G
for some specific known fading memory time constant a • 0, is ar...ytic on If G has nonzero initial conditions, its outputs am the superposition of
Re(Is)> a and satisfies a natural response and a forced response:

ll~ l !.(4) 0 = ON + O@F
Nme that for the speu ca = 0, the M of allowed A covrs the loud V = VN + VF (8)
unit ball in H-. Y, o YpNf + Yfl.



-Since G aSOW arid is known, all of the natral response terms decay To avoid a proliferation of notation. let 9. Y, g, and d be re-defined
exponentially. with a known maximum time constant hereafter so that we may use Figure I as a representation of the 5' stem.

The assumed prior knowledge of the initial conditions is an upper with G and A initially at rest. and d. not necessarily zero but sausfy-ing a
bound on the "amplitude" of the exponential respon se. that is. known exponentially decaying bound on Ild, Ila.

I pv(t)I cce1. where c and a ame known apriori. Note that a decay-
ing exponential bound on a signal implies that the I -I I norm of the sig- IIL Perfect Naaettr Informaition Robust Control
nal also has abound with an exponentia decaynrte of atleast r. The concept of robust stability can be extended to the case of

unspecific tuned adaptive systems. As a first step, we represent the system
2. Initial Conditon of Unmodeled Dynaics of Figure I in the form shown in Figure 3. Note that M of Figur 3 has

Note that when the input to Aisam o all time, theassuption an input rand outpus yand y, which amnot shown in Figure '. ne
IAIP f 1,2 I implies that the output of A is ze (exre precisely, equivalent added output y is simply a signal one wishes to seep small. For example,

to zero in the L2
-0 norm). Consequently. when A is thought of as a y could he chosen to be the command tracking error, r-yp. Lnear filters

representation of unmodeled dynamics, the assumption IAl11
91 ig is en can he used to capture the relative importance of different frequencies.

erally reasonable only if the unmodled dynamics am initially at rest. Here these are assumed to be absorbied into M. This is all fairly standard in
we will modify the representation of unmodeled dynamics to remove th recent robust multivusiable control literature.
at-rest assumption while retaining the operator norm bound on &.

Since the nmodeled dynamics need not be linear, we cannot describe
iheir output as the superposition of a forced response and a natural d
response which is independent of the unmodeled dynamics input. Instead,
we decompose the tota effect of nmoled dynamics into the sum of a
component d which is smaller than v in norm, and a residual component
4.j The residual dN is not assumed to he independent of v. but is a
assumned tosatisfy I I I I0-t S cc m forasome known c, irrespective of v. r 11PMy

Now the total operator from v to d + dv need no produce an output
of zero even when v is zero.

3. Equivalent At-Rest System with One Added loiar Y
Now define

1' G2 (yp - G 22up=G 3-11(YPF - G 2p )+ Gt y (9) Figurel3 Perfect Paiumeer nformation Tuned System

[ i Yv ; :Gj (10) The signals r, and y, are included for a non-stardard reason, namel.,
up] to ensure structural robusams of the robust peformance defimoton to be

(Note that jp = yp.) The system of Figure I with non-rest initial condi- gvnltr o o.i ufcst nwta xady mayaddss

insall at r A seuvlntteh ytm fFgr:2wihGadA inputs or outputs which do not involve added dyuamcs. That is.
initall at esLgiven a state-space representation Of M. Y,, is any linear combination of the

states (arbitrary output matri associated with Y,) and r. enters the sLaze
dN derivative definition in any linecar fashion (arbitrary input matrix associated

+ (Gwith r.), but no states have been added to Ml to allow the inclusion of r.
A G 31' Yp and yx.

Note that the system of Figure 1. excluding the A block, is known a

d priori except for the parameter vector Op and the controller gains Oc
eTG 3l ' 0 +O However, wice the desired controller gains are a function of the plan:

P +i 11parameters, the tuned system is a function of only the plant parismet.rs
Thus, in the case of the tuned system. Figure I can be reprsented in the

.1-Nform of Figure 3. where Al is at linear time invariant transfet f-.ton
depending only on ep. When the functional dependence of M is scopo-
tant, we will write M(Ops) (s is the Laplace transform variable)

ypLet M be parttioned such that the submatrix Ml11 iP the transfer func.

tion from d to v.-

F4=ur2- MainOLaIMOnf ft Effects of Non-RwuthdWuia ton s Definirion I Thne control law defined by K an fe is a-robsl) b, W±
irig (given perfect paraeter information) if ar only if

Although superpositon need not apply for A, for any signals a and b, (i) SOM(8Ox) is strictly stable for all Opet~p
one can cover the set (c: c a A(a +b), I IA11,15 11 by the set an
(c: ca A'a +,&"b. ilI'l, S 1, 114"11l1 S 1). Consequently, the an
various inputs shown in Figure 2 can be further algebraically moved to the J sup v 1. + I .1
node which defines j, withgout changing the definitions of j, 4, and i. SUi P su IAII ~ I Ii " -
The net input at the j node is 11p1E00 *r00

ds udN + G 31ypm, + A'(G~fG11ypN + vv) 1IrI~
When a control law is 'cibustly suabilizing in this sense, the system %-iA be

+ OJ(G I IG 3-1 ypN + #A,).(I said to have awnd s,,zem a-robsrness or perfect parameter irormanion
Furthertmore, since Y'N. #At, and ypwv have exponential decaying bounds. a-robssrness.
their 11-110J norms have an exponential decay rate. Since a known It is well known that, except for trivial degenerate cases which may
induced-L2u nom bound is known for G. A, and Op (recall Op is com- be neglected, condlition (ii) is equivalent to
pact), a known exponentially decaying bound exists for 11d, IIJ i) 'UP sup.

ltdx 11' !C ;Q) w 47oe- Vr (12) o~ep (a l 1 8Jlg.)C1
for some known function j; and positive constant d. This definition ts simply the usual definition of strct robust stability.

T1he result of this last algebraic manipulation is a system str except that now we require it be satisfied for each candidate tined system
exactly as shown in Figure 1. The internal signals ae different (to would Note that 'H1r 110J is bounded implies that 11Y 1iij is bounded' is
appear in place of 0. et ceters), d. is now nonurn. and G and a we now giisflhteed for all allowed 4 and Op if and only if the awned system has
initially at nat The signals up and yp wce unchanged. a-iobustiis5i



Definition 2 : For a particular a-robustly stable tuned system M, the a- IV. Robust Parameter Estimation
7obus performance level, denoted av(M), is defined to be the smaest
number C such that the following holds: This secton summanzes the essential details of [12]. [], with some

minor modifcations.
For any choice of input and output mamces defining r, and y,,

there exist finite constants C 2. C3, and C4 (which may depend on A. Ejnation Problem Fornuation
the input and output matrices defining P, and y,) such that The estimation algorithm to follow will depend on an error equaion

Ily 110 5 C lir Ile- + C2 11r, llJ (13a) which arises in a general class of direct ([10] and [9]) and indirect ([l )

Ily. Il a S C3 1ir il
e a + C4 11r i0 (13b) adaptive control systems, which am compatible with the representation of

for al r and foral d such that lIldllcJ 5 Iv l1l. (I3c) ge 1.

Note, from Figure 1 that one can cons uct g m (G3I'(yp - G 32up.
and fom g and up, one can easily construct 4. and v using the known

The small gain theorem [19] and O-robust stability of M guarantees value of G. Then one can construct e(t)=g(t)-O(iO,), whuch

that a0(M) is a well-defined finite number. satisfies

Defuuinon 3 . The nnd-system -robust performance guarantee is defined e(t) - +d 1)+d,) (14)

to be d = Av (15)
,*M - sup e (M ), lid, IIOJ  5 ,(t). (16)

):=O__ In the above, d., e and v am known scalar signals, $ is a known vector

The O-robust performance gumntee resembles the notion of robust -igna.. i is the unknown prameter ror vector, and A is the unknown
performance of multivariable control theory to the extent that it is a utnstrctd plant pervnbstioc.
bounded-gain definition, as indicated by the following lemma.

B. Adjam ai Law Defimnion
Lemma I : When r, : 0. Lot Yo, tl. and F-2 be small positive constants, with C2 E An upper{ ~ . ~bound on E2 will be specified later in the section on stabizr and aSyN~p

supp lA, 1 totic performance; the parameters arn otherwise mbitrary.
p @Op [ HIr 10J j We define the parameter adjustment by

IT Jt) 7= j(r)W T) + d CO + d, (,rt. . (17)

The definition of a is such that it gives an approximate measure of
performance even if very small modeling errors elsewhere in the stru-ure I(t) :- IITl, 10J - 1 )1 0 4 -d() 8
have been neglected, as indicated by the following lemma- ht) ? 0

Lemma 2: t) is such that y(t) = 0 if 1(t) S E, 110 110 (19)

lid ll S liv 1104 i 1 -" all(m)-
e-" r IIr lad j q(t) := e- 'o(TTl, (td (20)

(v y y.r]T = M[d r ,IT

This structural robustness property is crucial to the engineering utlity d ( p ( __ = )q (I
of the value of a(M). In practe, one prefers not to represent every

extrneely small er such as mundoff noise in every conutol computation. where x denotes the projection into the set @p (i.e., ep(f) is not allowed to
Instead, one characterizes the larger modeling uncertainties with some sort exit ep).
of bound which approximates one's intuition about the actal modeling Remark: A recursive realization of the above may be obtained b'
errors, and derives robust performance measures based on the mathematical differentiating the integraJ equatons for q and l, and mz% be fourn
chaacterization of the uncertainty. These performance measures are useful in [12] as well.
if the actual performance is acceptably insensitve In slight deviations in
the approximate mathematical cmacterintion of the uncertainty. The C. Discussion
mructural robusess poperty above is a fundamental form of inlsesitivity The above parameter adjusteni has the interpretation of a gradient

to slight deviations in uncertainty characteriztion. scheme to minimi rl, 110J. with a relative deadzone (y vanianon). The

The definition of e" is such that it is the tightest smicturily-robust a dcadzone, pictured in Figure 4, has a heuristic explanation.
priori bound possible on the gain from r to y, for the tuned system.

Remark: the robust peformano definition above ignores the effect of
initial conditions on performance. However, when initial condition '(t)
responses can be represented as exogenous disturbances with an a priori
known bound, the above formework can incorporate their effects. In this
paper, we will examine only asymptotic performance as time approaches
infinity for systems with fading memory, and therefore the initial condition
effect on performance is null and need not be included in the robust per-
formance definitions. ,o"

Remark: the central problems of robust multivariable control theory Yo0 .........

are (l) to find analysis tech iques to determine the numerical value of the
robust performance levels of a system (e.g., a(M )). and (2) to find syn- ](H
thesis techniques to make the robust performance levels as favorable as
possible. This paper will not address these questions. Instead, we will
show that regardless of the robust control techniques applied. the adaptive e °

sytm's stabilify and asymptotic performance guarantee will equal those of SI I 52 E i2 I
the mned system given perfect parameter information. In effect, the panic-
m' robust control design method which produces fc and K (Figure 1)

and the method for calculating a(M) are irrelevant to the results of this Fig=ue 4. Adaptation Ghni Coitraints
paper. Of couae. in pracim, the robust control design step is of great
Imulartnno.



Note that te.imkown property of d as given by (15) and the II.II1 Implication (A) of Tbeorem 3 is a statement of BIBO stabirty. When
bound on A is IIdII rI I v I I ". Thus when I(t)!0, it may be that = 0, the stability is in the sense of the usual L2 norm. For a >0. the
Op(t) = 0; the assertion thait , (r) = d(r ) + 4 (T) is not contradicted by BIBO property is true with respect to a norm which is simi ar to the L2

the norm bound. Thus the definition of 7 ensures that the adjustment is norm, but with fading memory.
disabled when the parameter arro 4 is indistinguishable from zro in some Implication (B) of Theorem 3 is a statement of asymptooc perfor-
sense, based on measured signals. The inclusion of a noueo e, adds a mance. In effect, the guaranteed asymptotc performance of the adaptive
certain stnictess to definition of "distinguishable" to prevent adjustment system can be made as close as desired to the guaranteed performance of
when the parameter error is arbitaily close to "indistnguishable from the system given perfect parameter information, as defined in section If.
Zero.

On the other hand, when I ( ) > 0, one can deduce from (17) that B. Choice of the Key idenrificanon Coerficien
Theorem 3 involved the choice of the parameter e2 which pa.l)y

ip()l 2 , (22) defines the adaptive gin. This section shows that the proper choice is
governed by a simple rule: the adaptation must be "tuned on" when the

The minimum para-m.e djastmen gain y. is imposed when IOp(s)l is parametze errors a rge enough to produce unacceptable behavior.
distnguishably *too large," that is. reter than e2. Las we will choose Note that Op - 6p. + Op.. and that 0, (t) = 0 . + (Oc () - e,.)

to correspond to parameter eros which la enough to cause a loss of One can therefore represent the system of Figure I in the form shown in
robust stability or performance. The net effect is this: it is impossible to Figur 5 (with $ being an arbitrary gain). In the figure, M' is the asvmp.
have unstable behavior (or worse-than-specified performance) without hay- stic system, except for residual errors. It is a tuned system, albeit possiblv
ing adaptati oedon (() k y > 0). tuned for thew ng plant

D. Parameter Convergence Consequences The value to this =presentation is this: sunce AM is a tuned system
containg no uncerainty and parameterized by ipcp the robustnessLet 5(t) denote the eucidean distance between the estimate ip (1) and propertis of Vfan be evalue a pri- by Wwg the rs cam over

the set of valid plan parameters e;. -e, as in section IL

Theorem I , 'Monotone Ertr Reduction:" Note that with 0p. z 0, the system of Figure 5 is effectively the
Equations (17) through (21) imply same as that of Figr e 3. Granted, M" has addicoal outputs g0 and %

d 1 which ae internal to M. and Ar is a function of the asymptoc estimate
-88(t) -2"t) IllT II ea - 1(s Irl -(o)O 11Ill

a 
so V . p.,whileM is a function of the true parameters Op. Still. the robusness

prope s involve the image of 19 in U-space (or hf-space) and this
with equality if and only if didi 0p () = 0. image is the same for M and V (modulo added outputs for W"), it foows

that A' has a-robust stability in the presence of & if and only if M has a-
Theorem 2, "Asv-sotic Time-Invariance:" robust stability.

t-___ bptS) =: ip. exists.

Taking any fixed (though unknown) choice of Opee and the associ- d v
ated flxed choice of A in the open unit ball in H-, one can define the
asymptotic plant parameter error -ier.. := Op (23) d.6(23)
and the asymptotic contoller parameter vector X

Oc- := f, (§P-). 
(24)

Since fc is Lipschitnan on the orbit of interst. er. is the limit of 0 c(t),
and Oc (t) inhents the uniform boundedness of Op which is apparent from
Theorem I and the compactn~ess of 0;. -

V. Stability and Asymptotic Performance
We have not shown convergence of the parameter error to zero. In

genera., this does not occur, as parameter identifiability is excitation depen.
dent, and we have not made assumptions regarding the excitation. 0 t "
Nonetheless, one can bypass the question of parameter convergence and
directly deduce robust stability and performance properties of the overal
system using properties of the identification laws alone. Figure 5. Complete System

A. Staement of Result

Recall that k is a free parameter in the identification laws. Now let us conmeptually expand the uncertainty set to allow

Theorem 3 , "L2-0-BMO and Asymptotic Performance:" Given l8..I < g-
(GI) the control law is a-robustly stabiizing given perfect parameter Lp er
information (as defined in section I), Let M be partitoned so that , Lv is regarded as the fst

(G2) the design rile f, is lpschiman, output vector, that is, W(I1 is the transfer function from i. to [v ] Let

(G3) that the robust parameter estimation laws of section IV ame used. V' be defined in the sam manner as that of li. except with v. taking

(G4) r*L21rL . ,  the place of Y and with Ilvll0 +g 11411o j in place of Ilv,, io ' In

it follows that (13c).

(A) for k chosen sufficiently mal, all signals shown in Figure I a Lamma 3 : If the original system had perfect parameter information o.
in L2.0. robust stability, then for some g, > 0, g S g, implies that the system of

If in addition. Figure 5 has a-robust stability.
(GS) a>•0.it follows tat 0,emmia 4 .- For any a, > 0, there exists a g,(a,) > 0 such that g S g
(3) for any a, > 0, there exists a suffciently small choice of E2 such implies a'0(M') < e(M) + a t.

thal The choice of t2 indicated by Theorem 3 is the following c: < g,
Ily ()implies BEBO-L00 stability, and tf2 < g,(a) implies an asymptotic perfor.

+()a mance level of 5a(M) + C11.



Now let us conceptually expand the uncertainty set to allow 4 Si. Fu and B. R Barnush. 'Adaptive Stabilization of Linear Systems

lep !5 g (25) via Switching Control," IEEE Transactions on Automanc Conrrol.

Vol. AC-3. December 1986.
Let Xf' be partitioned so that v.~: ~ i s regarded as the first S. C. V. Hollot, D. P. Looze. and A. C. Bartlett. "Unmodelled Dynan-

ouptvcothat is, Af1 is the transfe function from T-to Ltics. Per~frm'anice and Stability via Parameter Space Methods"-output veto, tvI Proceedings of the 1987 American Control Conference.
-, be defined in the same manner as that of e. except with vi,,., taking

the place of i, and with I v I I + g I i i1J in place of lv, !. m 6. P. A loannou and K. S. Tsakalis, "A Robust Direct Adaptive Con-

(13c). troller," IEEE Trauacnons on Automatic Control. 6ol AC-3l. pp.
1033-1043, November, 1986.

Lemma 3 If the onginal system had perfect parameter informianon a- 7. J. Krause and G. Stein. "Structural Lirrutations of Model Reference
robust stabihit. then for some g, > 0, g S g, inplies that the system of Adaptive Controllers." Proceedings of the 1987 American Control
Figure 5 has o-robust stability, Conference. June, 1987.

8. J. M. Krause and P. P. Khargonekar, "On an Identification Problem
Lemma 4 . For an ct > 0. there exists a g. (cell > 0 such that g < gp Arising in Robust Adaptive Control" Proceedings of the 26Th IEEE
implies <"(Il) < t.kf) + a,. Conference on Decision and Control. 1987

The choice of E2 indicated by Theorem 3 is the following: E2 C 8, 9. J. M. Krause and G. Stein, "A General Adaptive Control Structure,"
implies BIBO-Li ' stability, and E, < g,(al) implies an asymptotic perfor- Proceedings of the 27th IEEE Conference on Decision and Control.
mance level of acztM) + cat. December 1988.

These choices have a heuristic explanation. The lemmas state that 10. J. M. Krause and G. Stein, "A Mathematical Framework for Practical
small residual parameter errors are not destabilizing, or do not cause viola- Adaptive Control Design," Report AFATL-TR-88-139. U.S Air Force
tion of a given performance ot-jective. The choice of E2 will guarantee that Armament Laboratory. Eglin Air Force Base. January 1989.
the adaptation gain is bounded away from zero whenever the parameter
error norm is distinguishably larger than the level which is tolerated by the 11. . M. Krause and P. P. Khargonekar. "Parameter Idenraficaton in the
robustness of the perfect parameter tnformation tuned system. Because the Presence of Nonparanetic Dynamc Uncertaint,." Auton'.a::ca. 1990.
"alue of E, depends or.!% on Xf' and not on 6p., it can be determined a 12. J M. Krause. P. P. Khargonekar. and G. Stein, "Robus: Parameter
-Iorl Adjustment with Nonparametnc Weighted-Ball-in-H-if.n:r , Uncer-

tainty," IEEE Transactions on Automatic Control. 1990.
VI. Conclusions and Directions 13. G. Kreisselmeier and B. D. 0. Anderson. "Robust Model Reference

Adaptive Control," IEEE Transactions on Automatic Cor."ol. No!
Th:s paper shows that if a lpschttzan control law provides robustness AC-31. pp. 127-133, February, 1986.

u hen suppked with the correct parameter vector from a compact convex
se. and if the spec:fied robust parameter adjustment laws are applied in 14. D E. Mi!er and E. J. Daison. "An Adaptive Cont-rcer W':ch Pro-
lieu of knowledge of the correct parameter vector, then the overall adaptive vides Lyapunov Stability." IEEE Transactions on Autornrt.C Control.
system provides L2-BIBO stability. Furthermore, when the norm used con- vol. AC-34. June 1989.
tains any degree of exponentially fading memory. the asymptotic perfor- 15. K. S. Narendra and A. M. Annaswamy. "A Newk Ada-,t:e La, for
mance guarantee is effectively the same as one would obtain with perfect Robust Adaptation Without Persistent Excitation." IEE Trarsacors
parameter information. No persistency of excitation assumptions were on Automatic Control, vol. AC-32, February,. 1987.
required, and nonzero initial conditions were allowed. 16 \i G. Safanov and M. Athans, "A Muluiloop Genera:z.a::or of the

In addition to these theoretical properties, the control laws of this Circle Cntenon for Stability Margin Analysis,' IEEE T':uc:.'s or
paper have certain practical merits. The parameter adjustment makes Automatic Control, vol. AC-26, April 1981.
engineering sense in that it continually improves the parameter estimate to 17. M. Vidasagar. Control System Synthesis A Fre:':: . .:
the greatest degree possible consistent with the nonparametc uncertainty M.I.T. Press. Cambridge Massachusetts. 1985.
assumptions, unlike stabilizing compensator existence results and impracti- 18. K. Wei and R. K. Yedavalli, "Robust Stab:lizabi:t for Linear S's-
cal dense search constructions. Furthermore, the full magnitude of uncer- tems with Both Parameter Variation and Unsrrucrued Utcertain,..'
tainry which can be tolerated by the non-adaptive system with parameter IEEE Transactions on Automatic Control, vol. 34, Februar. 1989
knov ledge can be tolerated by our adaptive system, unlike earlier "robust-
ness to suffiCiently small perturbations" results. Finally. it is a non- 19 G. Zames, "On the Input-Output Stabilivty of Non:near T;.Ve-Va-':rg
mysterious resulL the simple engineering heunsuc of robust control and Feedback Systems, Pan I and Il." IEEE Transacions on Autcmtc
plus robust parameter adjustment produce stability in a traceable fashion. Control, vol. AC-11. 1966.
These are important strides toward practicality. 20. G. Zames. "Feedback and Optimal Sensitivity Model Reference

Still, these results fall short of a complete practical theory in at least Transformations. Multiplicative Sertunorms. and Approximate
two important respects. First, the transient performance is not quantfied, Inverses," IEEE Transactions on Automatic Control. vol AC-26, pp
and may be extremely poor for some plants and some command inputs. 301-320, April, 1981.
Second, the uncertain parameters were assumed constant, while adaptive 21. G. Zames and B. Francis. "Feedback. Minimax Sensitivity, and
control is often most valuable when the unknown parameters vary in tame. Optimal Robustness." IEEE Transacnons on Automatic Control, vol.
Further research is required to overcome these difficulties. AC-28, pp. 585-600, May, 1983.
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